FINAL PROJECT REPORTWTFRC
Project Number: TR-09-05

Project Title: Mobile linear asymmetric fruit transport systems

PI: Randy Allard
Organization: Picker Technologies LLC
Telephone/email: (206) 550-7675
\texttt{randy@pickertech.com}
Address: 8015 SE 28th Street
City: Mercer Island
State/Zip: WA 98040

Co-PI (2): Tony Finazzo
Organization: Picker Technologies LLC
Telephone/email: 206-275-0490
\texttt{tony.finazzo@pickertech.com}
Address: 8015 SE 28th Street
City: Mercer Island
State/Zip: WA 98040

Co-PI(3): Shawn Quinn
Organization: Picker Technologies LLC
Telephone/email: 206-275-0490
\texttt{Shawn.quinn@pickertech.com}
Address: 8015 SE 28th Street
City: Mercer Island
State/Zip: WA 98040

Co-PI(4): Marc Bommarito
Organization: Picker Technologies LLC
Telephone/email: 206-275-0490
\texttt{marc.bommarito@pickertech.com}
Address: 8015 SE 28th Street
City: Mercer Island
State/Zip: WA 98040

Other funding Sources

Agency Name: Picker Technologies, LLC, Oxbo International Corporation
Amount awarded:
Notes: WTFRC Grant represents $<$ 5\% of total R&D costs to date

Total Project Funding: $200,000.00

<table>
<thead>
<tr>
<th>Item</th>
<th>System</th>
<th>Scan</th>
<th>Dry Bin</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salaries</td>
<td>$70,020.68</td>
<td>$14,916.68</td>
<td>$15,062.64</td>
<td>$100,000.00</td>
</tr>
<tr>
<td>Benefits</td>
<td>$20,110.09</td>
<td>$4,125.98</td>
<td>$3,763.93</td>
<td>$28,000.00</td>
</tr>
<tr>
<td>Wages</td>
<td>$21,776.58</td>
<td>$8,223.42</td>
<td>$ --</td>
<td>$30,000.00</td>
</tr>
<tr>
<td>Benefits</td>
<td>$1,500.00</td>
<td>$1,000.00</td>
<td>$500.00</td>
<td>$3,000.00</td>
</tr>
<tr>
<td>Equipment</td>
<td>$7,379.08</td>
<td>$6,620.92</td>
<td>$ --</td>
<td>$14,000.00</td>
</tr>
<tr>
<td>Travel</td>
<td>$20,773.32</td>
<td>$3,058.88</td>
<td>$1,167.80</td>
<td>$25,000.00</td>
</tr>
</tbody>
</table>

| Miscellaneous | | | | |

Total | $141,559.75 | $37,945.88 | $20,494.37 | $200,000.00 |

Objectives:
1. Develop and test one (1) pilot fully integrated mobile fruit transport harvest system that increase the economic efficiency of harvest and post harvest, 2.5 to 6 times over traditional methods.

2. Develop and test an in-field cull sorter and bin storage (management) system (to decrease storage costs and increase revenue opportunities for the grower).

3. Develop and test a ‘Dry Bin Filler’ that minimizes damage to fruit while safely loading a bin in-field at a minimum of 8 apples per second (profitability).
Significant Findings:

Objective 1. Mechanical harvesting of apples works and is viable.

Objective 2. In-field Scanning/Sorting on a mobile Harvester is viable at a significantly lower cost point than delaying all fruit for Scanning/Sorting in a Packing House.

Objective 3. The bruise incidence for the Dry Bin Filler can be 0 to 4% depending on the Apple variety when the level-fill sensor and speed sensor are properly adjusted along with an even load balance for picking.

Results and Discussion:

Objective 1. After approximately 1000 hours of endurance testing, the pilot, integrated mobile fruit transport harvest system, which was developed is comprised of three main technology areas: 1. labor assist Picking Platforms; 2. fruit singulation for Scanning/Sorting; and 3. gentle Dry Bin filling. Testing and Orchard evaluations for the Harvester occurred in plantings of Vertical Axis; Slender Spindle; and V-Trellis which exhibited varying terrain, different degrees of pruning, and tree training. Several varieties of Apples: Gala, Golden Delicious, Red Delicious, Granny Smith, Fuji, Braeburn, and Pink Lady were harvested and each expressed its own unique characteristic during the Harvester development. Gala, Red Delicious, and Fuji were hardy varieties to mechanically harvest and showed the promise for the pilot system. Golden Delicious, Granny Smith, and Pink Lady acted like a spot light for specific areas within the pilot Harvester which needed the most attention and updates during the 2009 Fall Harvest. Pink Lady’s for this year appeared to be the most sensitive to mechanical damage. With only 10 weeks of harvest time to perform the testing and in-field evaluation, improvements and design changes had to be done simply and quickly. There was a compromise made related to the ideal design changes needed and the ability to gather important information and orchard experience within the relative short season.

Objective 2. In-field Sorting and Scanning of cull defects occurred and was demonstrated to be effected in detecting sub-surface bruising along with cuts, stem puncture, limb rub, scars, depressions, hail, bin scuffing, Bitterpit, Lenticel breakdown, Russet, codling moth, and general decay. Some in-field challenges were discovered which showed the need to adjust lighting between the ‘picking lanes’; sunlight penetration protection; fruit ‘calming’ to enable adequate scanning; software updates, and hardware configuration adjustments.

Objective 3. Several varieties of Apples: Gala, Golden Delicious, Red Delicious, Granny Smith, Fuji, and Pink Lady were harvested and each presented itself during their inherent times of maturity but not necessarily during
the optimal times of development and in sync with design improvements. This objective focused on the Dry Bin Filler and its ability to deliver fruit at 8 per second and with minimal bruise damage. The following table depicts the progression of improvement in bruise incidence associated with design improvements discovered in a variety of testing environments.

Table: Dry Bin Filler Bruise Assessment Tests

<table>
<thead>
<tr>
<th>2009</th>
<th>Apple Variety</th>
<th>Qty Tested</th>
<th>Assessment</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PREVIOUS TESTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>March</td>
<td>Electronic IRD</td>
<td>8 Passes</td>
<td>Low Impacts</td>
<td>worst case drop</td>
</tr>
<tr>
<td>June</td>
<td>Golden Delicious</td>
<td>80 Apple Shop Test</td>
<td>10% out of grade</td>
<td>Wash Xtra Fanc</td>
</tr>
<tr>
<td></td>
<td>HARVEST 2009 TESTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>August</td>
<td>Gala</td>
<td>~ 3 Bin: Orchard Test</td>
<td>no significant bruises indicated</td>
<td></td>
</tr>
<tr>
<td>August</td>
<td>Red Delicious</td>
<td>~ 5 Bin: Orchard Test</td>
<td>no significant bruises indicated</td>
<td></td>
</tr>
<tr>
<td>August</td>
<td>Golden Delicious</td>
<td>~ 5 Bin: Orchard Test</td>
<td>Some bruising indicated due to incorrect fill sensor calibration</td>
<td>3 different fill heights assessed for minimal damage</td>
</tr>
<tr>
<td>September</td>
<td>Granny Smith</td>
<td>~ 10 bin: Orchard test</td>
<td>Some bruising indicated due to incorrect speed calibration</td>
<td>Speed was faster than 8 Apples per second</td>
</tr>
<tr>
<td>September</td>
<td>Granny Smith</td>
<td>200 Apple: Shop Test</td>
<td>5% small impact bruising</td>
<td>deposited onto 3 layers of Apples</td>
</tr>
<tr>
<td>October</td>
<td>Fuji</td>
<td>25 Bin: Packing House – Packout Test</td>
<td>no significant bruises related to Dry Bin Filler noted. Sample from Pack-out: 3.88% Bruising 1.94% Cuts 1.55% Stem Puncture</td>
<td>Damage not necessarily attributed to Dry Bin Filler. Need to compare against ‘hand harvest’ for same time and block</td>
</tr>
<tr>
<td>October</td>
<td>Pink Lady</td>
<td>250 Apple: Orchard Test Sample</td>
<td>bruising related to even Dry Bin Filling was not detectable</td>
<td>28% of Apples on the trees within the Orchard exhibited pre-existing damage</td>
</tr>
<tr>
<td>October</td>
<td>Pink Lady</td>
<td>100 Apple: Shop Test</td>
<td>4% exhibited out of grade bruising</td>
<td>8 Apples per second fill rate</td>
</tr>
</tbody>
</table>