Developing a Management Strategy for Little Cherry Disease

Andrea Bixby-Brosi & Elizabeth Beers: Entomology, Wenatchee, WA
Ken Eastwell: Plant pathology, Prosser, WA
Karina Gallardo: Economic Sciences, Puyallup, WA
Tim Smith: Regional Extension Specialist, Wenatchee, WA
Little Cherry Disease (LCD)

• Symptoms
 ▪ Produce cherries of small size and poor color and flavor
 ▪ Not the same for all cultivars
 ▪ Symptomless trees serve as a reservoir

• Economic losses
 ▪ Unpicked fruit
 ▪ Packing house rejections
 ▪ Tree and orchard removal
Little Cherry Disease history

• In BC Canada (Kootenay Valley)
 • First observed in 1933
 • Quickly spread to more than 30,000 trees within fifteen years, and then more slowly after 1950
 • The last packing line in the Kootenay Valley closed in 1979

• In Washington
 • Since 2010 LCD has become a statewide problem
 • Verified in Chelan, Douglas, Grant, Okanogan, Yakima, and Benton counties
Pathogens associated with LCD

1. Little cherry virus 2 (LChV2)
 - Transmitted by mealybugs (apple & grape)
 - Outbreak in Chelan and Douglas Counties

2. Western X phytoplasma (WX)
 - Transmitted by leafhopper (various species)
 - Surprising resurgence discovered in 2014

3. Little cherry virus 1 (LChV1)
 - Mode of transmission unknown
 - Present at low level throughout WA State
 - Typically found in combination with LChV2 or WX
Managing LCD (slowing the spread)

1. Control mealybug (or leafhopper)
 - No current recommendations for controlling mealybug in WA cherries

2. Identify and rouge infected trees
 - Difficult to ID LCD via visual symptoms
 - Currently molecular analysis is the most reliable diagnostic tool
 - Working to develop a diagnostic kit to simplify the ID process
Difficulty diagnosing infected trees

• **Visual diagnosis**
 - Trees may not show signs, but serve as a reservoir.
 - Degree of disease expression is dependent on cherry variety and weather.
 - Partial recovery in fruit appearance.
 - Confusion of symptoms with those of other pathogens, and certain types of nutrient deficiencies.

• **Molecular diagnosis**
 - Reliable, but expensive. Delays getting results.
 - Growers delay sampling and analysis, increasing the risk of inoculating nearby trees.
A diagnostic kit for detection of LChV2

• WSU Prosser worked with Agdia Inc. to develop the kits.
• May to June of the 2014, samples from symptomatic trees showing little cherry disease symptoms were tested for the presence of LChV2 by Agdia diagnostic kit.
• However, many samples from symptomatic trees did not give positive results in the RT-RPA assay format.
• Trouble shooting ensued......
Diagnostic kit troubleshooting results/conclusions

• Kits lack the sensitivity to reliably detect LChV2 in crude extracts used in RT-RPA method.

• Testing crude sap preparations during the latter part of the growing season provided much more accurate virus detection without the need to purify RNA.
 ▪ presumably due to decreased carbohydrate inhibitors present in crude sap and the increase in concentration of LChV2 in infected tissue.

• A new genetic variant of LChV2 was discovered.

• WX has been found to be an important pathogen associated with LCD in Grant and Chelan counties.
Little Cherry Virus 2 transmission

- Known Vectors

 - **Apple mealybug (AMB)**
 - Univoltine
 - Lifecycle understudied
 - No current control recommendations

 - **Grape mealybug (GMB)** (Mekuria et al. 2013)
 - Multivoltine

 - Egg masses on apple
 - Adults on shoot
 - Adults on cherry
 - Overwintering on apple under grafting tape
 - AMB egg mass
 - Adults

Mealybug control challenges

• Mealybugs notoriously difficult to control with foliar sprays
 ▪ Protected by cottony secretions and location on trees
 ▪ Gradual emergence
 ▪ Difficult to detect visually

Crawlers on the undersides of leaves

Egg masses in crevices
Apple Mealybug Phenology

- Overwintering females
- Overwintering males
- Emerged females
- Emerged males
- Egg masses
- Crawlers

Timeline:
- Jan
- Mar
- May
- Jul
- Sep

Phenological stages:
- Delayed Dormant
- Systemic Petal Fall
- Foliar Crawler
Apple Mealybug Chemical Control

Foliar Crawler
- Check
- Actara CE
- Diazinon CE
- Centaur CE
- AdmirePro Foliar CE

Systemic Petal Fall
- AdmirePro Drench PF
- Ultor+Oil PF
- Oil DD
- Diazinon+Oil DD
- Lorsban+Oil DD

Delayed Dormant
- Live AMB/leaf (seasonal mean)
Mealybug Control in organic systems

• Supreme oil, neem oil (multiple applications)
• Biological control using parasitoids
 ▪ AMB parasitoid – Encyrtid wasp, *Anyagyrus* sp.

Female on top, male on bottom

AMB egg masses with wasp exit holes

Lay eggs in AMB crawlers

Emerge

Mate
Progress for LCD project in 2014

- Diagnostic kit trouble shooting led to improved version
 - Release date unknown
 - WX kit in the works

- WX is more abundant than we previously thought.

- Delayed dormant plus a foliar crawler spray are best option for mealybug control
Plans for 2015

• Address chemical control options for GMB and organic for GMB and AMB
• Disease transmission bioassays
• Continue to troubleshoot the diagnostic kits
• Survey leafhoppers in WA orchards infected with WX
• Sample ‘whole orchards’ to determine disease epidemiology.
Acknowledgements

• Beers Lab Crew
• Eastwell Lab in Prosser
• Washington Sweet Cherry Growers
• Funded by
 ▪ Washington Sweet Cherry Growers
 ▪ Washington Tree Fruit Research Commission
 ▪ Oregon Sweet Cherry Commission
 ▪ California Cherry Board
 ▪ Stemilt Growers
 ▪ Washington Department of Agriculture